Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.913
Filtrar
1.
Arch Virol ; 169(3): 47, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38366081

RESUMO

Bovine leukemia virus (BLV) is a member of the family Retroviridae that causes enzootic bovine leukemia (EBL). However, the association between BLV infection and EBL development remains unclear. In this study, we identified a BLV/SMAD3 chimeric provirus within CC2D2A intron 30 in monoclonal expanded malignant cells from a cow with EBL. The chimeric provirus harbored a spliced SMAD3 sequence composed of exons 3-9, encoding the short isoform protein, and the BLV-SMAD3 chimeric transcript was detectable in cattle with EBL. This is the first report of a BLV chimeric provirus that might be involved in EBL tumorigenesis.


Assuntos
Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Provírus/genética , Vírus da Leucemia Bovina/genética
2.
Am J Vet Res ; 85(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38335721

RESUMO

OBJECTIVE: The objective of this study was to determine the seroprevalence of reproductive and infectious diseases in tropical cattle in the Tambopata and Tahuamanu Provinces in the department of Madre de Dios, Peru. SAMPLE: 156 bovines from 7 cattle farms were sampled. These farms used exclusive grazing for food and natural mating for reproduction and did not have sanitary or vaccination programs. METHODS: The serum of blood samples was subjected to ELISA with commercial kits for the detection of antibodies against Neospora caninum, Mycobacterium avium subsp paratuberculosis (MAP), Leptospira interrogans, pestivirus bovine viral diarrhea virus-1, retrovirus bovine leukemia virus (BLV), orbivirus bluetongue virus (BTV), and herpesvirus bovine herpes virus-1 (BHV). The data were analyzed by means of association tests with χ2 (P < .05) and Spearman rank correlation (P < .05) in the SPSS v.15.0 software (IBM Corp). RESULTS: A low prevalence of antibodies to L interrogans, N caninum, M avium subsp paratuberculosis, bovine viral diarrhea virus-1 was found, but it was high to BTV, BLV, and BHV (100%, 53.85%, and 72.44%, respectively). The presence of BLV and BHV was higher in the Las Piedras District, bovines less than 5 years old, and cattle with breed characteristics of zebu and crossbred (P < .01). In addition, there was a significant correlation between both infections, showing 83.3% of BLV positivity that were also BHV positive (P < .01). CLINICAL RELEVANCE: The high prevalence of antibodies to BTV, BHV, and BLV could be due to livestock management practices, direct contact with infected animals, and variation of the presence of vectors and natural reservoirs in the context of climate change in the tropics.


Assuntos
Doença das Mucosas por Vírus da Diarreia Viral Bovina , Doenças dos Bovinos , Doenças Transmissíveis , Vírus da Diarreia Viral Bovina Tipo 1 , Vírus da Diarreia Viral Bovina , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Paratuberculose , Bovinos , Animais , Paratuberculose/epidemiologia , Doenças dos Bovinos/epidemiologia , Leucose Enzoótica Bovina/epidemiologia , Peru/epidemiologia , Estudos Soroepidemiológicos , Anticorpos Antivirais , Anticorpos Antibacterianos , Doenças Transmissíveis/veterinária , Reprodução , Diarreia/veterinária
3.
Virus Genes ; 60(2): 173-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355991

RESUMO

Bovine leukemia virus is a retrovirus that causes enzootic bovine leukosis and is associated with global economic losses in the livestock industry. The aim of this study was to investigate the genotype determination of BLVs from cattle housed in 6 different farms in Türkiye and the characterization of their LTR and pX (tax, rex, R3, and G4 gene) regions. For this purpose, blood samples from 48 cattle infected with BLV were used. The phylogenetic analysis based on the env gene sequences revealed that all BLVs were clustered in genotype 1 (G1), and the sequences of the LTR (n = 48) and the pX region (n = 33) of BLVs were obtained. Also, analysis of these nucleic acid and amino acid sequences allowed assessments similar to those reported in earlier studies to be relevant to transactivation and pathogenesis. This study reports the molecular analysis of the LTR and pX region of BLVs in Türkiye for the first time.


Assuntos
Genes env , Vírus da Leucemia Bovina , Animais , Bovinos , Genes env/genética , Vírus da Leucemia Bovina/genética , Filogenia , Turquia , Sequência de Aminoácidos
4.
Vet Res Commun ; 48(1): 191-202, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37610507

RESUMO

Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), which affects cattle globally. In Egypt, BLV control strategies have been ignored because of the shortage of BLV research studies and the silent infection in most animals. This study aimed to identify the risk factors associated with the prevalence of BLV among dairy and beef cattle from six different geographic and climatic provinces in Egypt. Additionally, risk factors affecting the BLV proviral load (PVL) among the positive cattle were targeted. The total BLV prevalence in cattle from six investigated Egyptian provinces was 24.2% (105/433), while the mean PVL (8651.6 copies /105 white blood cells) was absolutely high as estimated by the BLV-CoCoMo-quantitative polymerase chain reaction (qPCR)-2 assay. Analysis of the influence of risk factors (age, sex, breed, production type, farm size, and location) on BLV prevalence indicated that the Holstein breed (OR = 1.582, p = 0.007), beef cattle (OR = 1.088, p = 0.0001), large-size farms (OR = 1.26, p = 0.0001), and cattle from Damietta (OR = 1.43, p = 0.0001) and Cairo (OR = 1.16, p = 0.0001) were ultimately proven the most important risks for BLV infection. The risk factors were analyzed considering the BLV PVL levels in the BLV-positive cases. Significantly high PVL (HPVL) levels were observed in cattle > 5 years old (p < 0.0001), females (p = 0.0008), Holstein (p < 0.0001), dairy cows (p = 0.0053), large-size farms (p < 0.0001), and cattle from Damietta (p < 0.0001) compared to other categories. Contrary, no significant differences in PVL levels were reported between the Native and Mixed cattle breeds (p = 0.13). Ultimately, the logistic regression model indicated that the probability of carrying HPVL in cattle > 5 years is 1.27 (95% CI: 1.03-2.09, p < 0.001) times more likely compared to cattle < 2 years old. In conclusion, the findings were valuably correlating the BLV prevalence with PVL as an indicator of the risk of BLV infection.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Feminino , Bovinos , Animais , Provírus/genética , Carga Viral/veterinária , Leucose Enzoótica Bovina/epidemiologia , Fatores de Risco
5.
J Dairy Sci ; 107(1): 530-539, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709045

RESUMO

The objective was to evaluate the effects of bovine leukemia virus (BLV) infection, as determined by BLV seropositivity and proviral load, on 305-d milk, fat, and protein production of dairy cows. A cross-sectional study was conducted among 1,712 cows from 9 dairy herds in Alberta, Canada. The BLV status was assessed using an antibody ELISA, whereas BLV proviral load in BLV-seropositive cattle was determined with quantitative PCR. Dairy Herd Improvement 305-d milk, fat, and protein production data were obtained for all enrolled cattle. Differences in these milk end points were assessed in 2 ways: first, by categorizing cows based on BLV serostatus (i.e., BLV positive or negative), and second, by categorizing based on BLV proviral load (i.e., BLV negative, low proviral load [LPL] BLV positive, and high proviral load [HPL] BLV positive). A mixed-effect multivariable linear regression model was used to assess differences in milk parameters. We found that BLV positivity, adjusted for parity and natural log-transformed somatic cell count (SCC), was not associated with reduction in 305-d milk, fat, or protein production. However, significant reductions in 305-d milk, fat, and protein yield occurred in HPL cows, but not in LPL cows, compared with BLV-negative cows, when adjusted for parity number and natural log-transformed SCC. In summary, BLV proviral load may predict effects of BLV infection on milk, fat, and protein production.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Gravidez , Feminino , Bovinos , Animais , Leite/química , Provírus , Estudos Transversais , Anticorpos Antivirais , Alberta , Doenças dos Bovinos/metabolismo
6.
Vet Immunol Immunopathol ; 268: 110703, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154260

RESUMO

Bovines infected by bovine leukemia virus (BLV) are characterized by presenting low proviral load (LPL) or high proviral load (HPL). It is reported that animals with HPL in peripheral blood mononuclear cells (PBMCs) present a decrease in apoptosis, an increase in viability and the proliferation rate, while animals that maintain an LPL have an intrinsic ability to control the infection, presenting an increased apoptosis rate of their PBMCs. However, there is little information on the effect of BLV on these mechanisms when the virus infects somatic milk cells (SC). This study investigates the mechanisms underlying apoptosis in milk and blood from BLV-infected animals with HPL and LPL. Relative levels of mRNA of tumor necrosis factor-α (TNF-α), TNF receptor 1 (TNF-RI), TNF receptor 2 (TNF-RII), anti-apoptotic B-cell lymphoma 2 protein (Bcl-2), and pro-apoptotic Bcl-2-like protein 4 (Bax) were measured in SC and PBMCs using quantitative reverse transcription-polymerase chain reaction (RT-qPCR) assay. A significant decrease in the expression of TNF-α in SC from HPL animals vs non-infected bovines was observed, but the infection in SC with BLV did not show a modulation on the expression of TNF receptors. A significant increase in TNF-RI expression in PBMCs from HPL bovines compared to LPL bovines was observed. No significant differences in PBMCs between HPL and LPL compared to non-infected animals concerning TNF-α, TNF-RI, and TNF-RII expression were found. There was a significant increase of both Bcl-2 and Bax in SC from LPL compared to non-infected bovines, but the Bcl-2/Bax ratio showed an anti-apoptotic profile in LPL and HPL bovines compared to non-infected ones. Reduced mRNA expression levels of Bax were determined in the PBMCs from HPL compared to LPL subjects. In contrast, BLV-infected bovines did not differ significantly in the mRNA expression of Bax compared to non-infected bovines. Our data suggest that the increased mRNA expression of Bax corresponds to the late lactation state of bovine evaluated and the exacerbated increase of mRNA expression of Bcl-2 may be one of the mechanisms for the negative apoptosis regulation in the mammary gland induced by BLV infection. These results provide new insights into the mechanism of mammary cell death in HPL and LPL BLV-infected bovine mammary gland cells during lactation.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Feminino , Apoptose , Proteína X Associada a bcl-2/metabolismo , Proliferação de Células , Leucócitos Mononucleares/metabolismo , Leite , Provírus/genética , Provírus/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
J Vet Med Sci ; 86(2): 135-140, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38123328

RESUMO

Enzootic bovine leukosis (EBL) is B-cell lymphoma in cattle caused by bovine leukemia virus (BLV) infection. The incidence of EBL has been increasing since 1998 in Japan, resulting in significant economic losses for farms. The BLV genome integrates with the host genome as provirus, leading to sustainably infection. Although most of the BLV-infected cattle are aleukemic, some cattle cause persistent lymphocytosis (PL) and subsequently develop EBL. Recent reports suggest the association between the risk for the transmission of BLV and the developing EBL and the proviral load (PVL) in BLV-infected cattle, which cannot measure readily in the field. This study aims to build a statistical model for predicting PVL of BLV-infected asymptomatic or PL cattle based on data accessible in the field. Five negative binomial regression models with different linear predictors were built and compared for the predictability of PVL. Consequently, the model with two explanatory variables (age in months and logarithm of lymphocyte count) was selected as the best model. The model can be used in the field as a cost-beneficial supporting tool to estimate the risk of transmission of BLV and developing EBL in infected cattle.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Bovinos , Animais , Provírus , Contagem de Linfócitos/veterinária , Modelos Estatísticos
8.
Sci Rep ; 13(1): 22356, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102157

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leucosis (EBL), which has been reported worldwide. The expression of viral structural proteins: surface glycoprotein (gp51) and three core proteins - p15 (matrix), p24 (capsid), and p12 (nucleocapsid) induce a strong humoral and cellular immune response at first step of infection. CD4+ T-cell activation is generally induced by bovine leukocyte antigen (BoLA) region- positive antigen-presenting cells (APC) after processing of an exogenous viral antigen. Limited data are available on the BLV epitopes from the core proteins recognized by CD4+ T-cells. Thus, immunoinformatic analysis of Gag sequences obtained from 125 BLV isolates from Poland, Canada, Pakistan, Kazakhstan, Moldova and United States was performed to identify the presence of BoLA-DRB3 restricted CD4+ T-cell epitopes. The 379 15-mer overlapping peptides spanning the entire Gag sequence were run in BoLA-DRB3 allele-binding regions using a BoLA-DRB- peptide binding affinity prediction algorithm. The analysis identified 22 CD4+ T-cell peptide epitopes of variable length ranging from 17 to 22 amino acids. The predicted epitopes interacted with 73 different BoLA-DRB3 alleles found in BLV-infected cattle. Importantly, two epitopes were found to be linked with high proviral load in PBMC. A majority of dominant and subdominant epitopes showed high conservation across different viral strains, and therefore could be attractive targets for vaccine development.


Assuntos
Linfócitos T CD4-Positivos , Vírus da Leucemia Bovina , Animais , Bovinos , Epitopos de Linfócito T/genética , Vírus da Leucemia Bovina/genética , Produtos do Gene gag/genética , Leucócitos Mononucleares , Antígenos HLA-DR , Peptídeos
9.
J Vet Med Sci ; 85(12): 1291-1295, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37914277

RESUMO

A 23-month-old Holstein-Friesian heifer presented with inactivity and diarrhea. On physical examination, no enlargement of superficial lymph nodes was observed. Hematological examination revealed lymphocytosis. The bovine leukemia virus (BLV) proviral load was 2,122 copies/10 ng DNA, and BLV was classified as Group C based on whole genome phylogenetic analysis. Monoclonal proliferation of B-cells and monoclonal integration of the BLV provirus in the bovine genome were detected by a clonality test of B-cells and inverse PCR, respectively. Although lymph nodes were not swollen at necropsy, histopathological examination revealed neoplastic lymphocyte proliferation in lymph nodes, which were immune positive for CD5 and CD20, and negative for CD3. The heifer was diagnosed with EBL caused by BLV classified as Group C.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Feminino , Bovinos , Vírus da Leucemia Bovina/genética , Filogenia , Provírus/genética , Linfócitos B
10.
Sci Rep ; 13(1): 18659, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907654

RESUMO

Enzootic bovine leukosis virus (BLV) and bovine herpesvirus 1 (BHV-1) are very important infectious agents for the livestock industry worldwide. The present study aimed to explore the association between natural exposure to BLV and BHV-1 with sperm quality analyzed by Computer-Assisted Semen Analysis (CASA) systems. Ten sexually mature Brahman bulls, with sanitary status BLV+/BHV-1+ (n = 2), BLV-/BHV-1+ (n = 6) and BLV-/BHV-1- (n = 2) were evaluated twice, 30 days apart. Results showed that sanitary status of each bull was not associated with semen quality. It was found that the quality of the semen from the second collection was better due to the interruption of sexual rest. The evidence thus revealed that a bull infected with BLV generated good-quality contaminated semen and, therefore, that it is essential to detect contaminated seminal samples to prevent the spread of BLV. A multivariate analysis showed the presence of four sperm subpopulations in Brahman bulls that differ significantly in their kinematic patterns and with respect to sanitary status (P < 0.05), indicating that infection-free and seronegative bulls present the best kinematic parameters, which improved discrimination of sperm quality according to sanitary status. Overall, the analyses indicate that the seropositive-infected bulls with BLV and BHV-1 should be excluded from beef cattle farms.


Assuntos
Doenças dos Bovinos , Herpesvirus Bovino 1 , Vírus da Leucemia Bovina , Masculino , Animais , Bovinos , Análise do Sêmen , Sêmen
11.
Vet Ital ; 59(1): 83-92, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37994640

RESUMO

The retrovirus bovine leukemia virus (BLV) might produce abnormal immune function, associated with susceptibility to developing other infectious diseases, including mastitis. This study aimed to determine the proviral load and cytokines gene expression in peripheral blood mononuclear cells (PMBC) and milk somatic cells (SC) in BLV-infected and non-infected cattle. Of 27 BLV-infected cows in PBMC, 17 (62.96%) had a high proviral load (HPL), and 10 (37.04%) had a low proviral load (LPL). All SC samples had low proviral load (LPL-SC). Higher IFN-γ and IL-10 expression, and lower IL-12 and IL-6 expression, were found in PBMC from BLV-infected compared to BLV non-infected cattle. Moreover, higher IFN-γ, IL-12, and IL-6 expression, and lower IL-10 expression were observed in cattle with LPL-PBMC compared to HPL-PBMC. In milk samples, lower IFN-γ and higher IL-12 mRNA expression were observed in LPL-SC compared to BLV non-infected cattle in SC. IL-10 and IL-6 expression mRNA was significantly lower in LPL-SC than in SC from BLV non-infected cattle. This study shows that milk SC maintains lower proviral load levels than PBMC. This first report on Th1 and Th2 cytokines expression levels in SC may be relevant to future control strategies for BLV infection, mastitis, and udder health management.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Mastite , Feminino , Bovinos , Animais , Citocinas/genética , Leucócitos Mononucleares , Interleucina-10 , Vírus da Leucemia Bovina/genética , Leucose Enzoótica Bovina/genética , Provírus/genética , Leite , Interleucina-6 , Interleucina-12 , RNA Mensageiro , Mastite/veterinária
12.
BMC Vet Res ; 19(1): 185, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37784057

RESUMO

BACKGROUND: The Kumamoto strain of Japanese Brown (JBRK) cattle is a sub-breed of Wagyu and has a different genetic background than that of Japanese Black (JB) cattle. Bovine leukemia virus (BLV) is the pathogen causing enzootic bovine leukosis (EBL), the predominant type of bovine leukosis (BL). EBL is one of the most common bovine infectious diseases in dairy countries, including Japan. Some host genetic factors, including the bovine leukocyte antigen (BoLA)-DRB3 gene, have been associated with the proviral load (PVL) of BLV and/or onset of EBL. Here, we determined the number of BL cases by analyzing prefectural case records in detail. We measured the PVL of BLV-infected JBRK cattle and compared it with that obtained for other major breeds, JB and Holstein-Friesian (HF) cattle. Finally, the relationship between PVL levels and BoLA-DRB3 haplotypes was investigated in BLV-infected JBRK cattle. RESULTS: We determined the number of BL cases recorded over the past ten years in Kumamoto Prefecture by cattle breed. A limited number of BL cases was observed in JBRK cattle. The proportion of BL cases in the JBRK was lower than that in JB and HF. The PVL was significantly lower in BLV-infected JBRK cattle than that in the JB and HF breeds. Finally, in BLV-infected JBRK cattle, the PVL was not significantly affected by BoLA-DRB3 alleles and haplotypes. BoLA-DRB3 allelic frequency did not differ between BLV-infected JBRK cattle with low PVL and high PVL. CONCLUSIONS: To our knowledge, this is the first report showing that BL occurred less in the JBRK population of Kumamoto Prefecture. After BLV-infection, the PVL was significantly lower in JBRK cattle than that in JB and HF breeds. The genetic factors implicated in maintaining a low PVL have yet to be elucidated, but the BoLA-DRB3 haplotypes are likely not involved.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Bovinos , Animais , Vírus da Leucemia Bovina/genética , Antígenos de Histocompatibilidade Classe II/genética , Provírus/genética , Leucose Enzoótica Bovina/genética , Frequência do Gene
13.
Trop Anim Health Prod ; 55(5): 343, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777681

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leukosis, a persistent infection and the most important neoplastic disease in cattle. It is spread primarily by transferring infected lymphocytes through blood from carriers to healthy animals. The present study is aimed at determining the seropositivity of BLV in breeding bulls from Costa Rica and at detecting for the first time in the country BLV DNA in bull semen. Between May 2011 and August 2018, 379 blood and 133 semen samples were collected from bulls distributed in 118 farms. The serum was analyzed by an enzymatic immunoassay and the semen by polymerase chain reaction and sequencing. BLV seropositivity was 43.5% (165/379), while 64.4% (76/118) of the farms had positive reactors. Holstein (75.7%) and Jersey (73.0%) breeds showed the highest seropositivity. In addition, Bos taurus bulls (68.1%), older than seven years (50.0%), and those belonging to dairy farms (75.5%) had higher seropositivity compared to Bos indicus (17.7%), younger than seven years (42.2%), and those from beef farms (15.5%), respectively. Moreover, Bos taurus bulls had a higher risk of being seropositive than Bos indicus (OR = 3.4; 95% CI: 1.7-6.8). BLV DNA was found in one semen sample (2.5%; 1/40) from a seropositive bull. The importance of serum and molecular BLV screening in semen samples and the potential role of some risk factors associated with the disease, such as the bull's age, genotype, and type of livestock productive system, is argued in the present report.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Bovinos , Animais , Masculino , Sêmen , Leucose Enzoótica Bovina/epidemiologia , Costa Rica/epidemiologia , Estudos Soroepidemiológicos
14.
Trop Anim Health Prod ; 55(5): 294, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656253

RESUMO

Enzootic bovine leukosis (EBL) is a chronic infectious disease caused by the bovine leukosis virus (BLV), a Deltaretrovirus. Bovine viral diarrhea (BVD) is an infectious disease caused by a pestivirus. Bovine neosporosis is caused by the obligate intracellular parasite Neospora caninum (Nc). These pathogens can have horizontal (postnatal) or vertical (transplacental) transmissions and affect the productive and reproductive performance of infected bovines. This work aimed to detect BLV, BVD, and Nc seroprevalence in specialized dairy cattle from the north, east, and Aburrá Valley regions of the Department of Antioquia, the highest in milk production regions in Antioquia. A total of 599 blood samples, obtained from 53 specialized dairy cattle herds, were evaluated by the ELISA test. The results revealed a seroprevalence of 41.13% for BLV (242/599), 28.48% (163/599) for Nc, and 22.7% (132/599) for BVD. Regarding the regional seroprevalence evaluation, BLV was found in 47.02% of the samples from the east, 36.87% from the north, and 46.02% from the Aburrá Valley. Nc was found in 31.03% of the samples from the east, 24.26% from the north, and 36.63% from Aburrá Valley. BVD was found in 21.62% of the samples from the east, 25.03% from the north region, and 10.39% of the samples from the Aburrá Valley. It is highlighted by these results that the north region, with the highest milk production in Antioquia, had the lowest BLV and Nc seroprevalences but the highest seroprevalence of BVD. BLV has increased in Antioquia in recent years, and as an immunosuppressive infection, opportunities for other pathogens are created by it. A significant statistical difference was found in the average prevalence of the pathogens according to the municipality, cattle breed, and region of origin of the sample. The seroprevalence of these pathogens in specialized dairy herds in Antioquia can be classified as medium-low. However, it is recommended that biosecurity practices should be maximized to avoid the spread of these pathogens due to the variability detected in the region, municipality, breed group, and herd age. The rapid and efficient diagnosis of these three pathogens through reliable methodologies will allow for the control of dissemination in dairy herds.


Assuntos
Doenças dos Bovinos , Doenças Transmissíveis , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Neospora , Animais , Bovinos , Colômbia , Leucose Enzoótica Bovina/epidemiologia , Estudos Soroepidemiológicos , Doenças Transmissíveis/veterinária , Diarreia/veterinária
15.
Open Vet J ; 13(8): 1012-1020, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37701663

RESUMO

Background: Enzootic bovine leukosis (EBL) is a lymphoproliferative disorder caused by the bovine leukemia virus (BLV), a virus of the Retroviridae family. The infection is distributed worldwide, and a high percentage of animals infected by the BLV are asymptomatic and act as carriers of the virus in many cattle populations. Aim: To identify the risk factors associated with EBL in the municipalities of Boyacá and Cundinamarca (Colombia). Methods: A simple descriptive cross-sectional study with random sampling was conducted. A total of 1,140 blood samples were taken from cattle (females and males) from the municipalities of Chiquinquirá, Ubaté, and San Miguel de Sema of different breeds and age groups. The samples were processed using the commercial ELISA SERELISA® BLV Ab Mono Blocking kit (sensitivity 97%, specificity 98%). The data were processed with the statistical programs WinEpi and Epi Info® version 7.2.4.0, estimating the prevalence ratio, implementing the chi-square test (p ≤ 0.05) and logistic regression. Results: A true prevalence (TP) and apparent prevalence (AP) of 23.61% and 22.7% in Ubaté, 19.22% and 18.1% in Chiquinquirá, and 15.61% and 14.3% in San Miguel de Sema, respectively, were established. Bovines 2-4 years old were the most prevalent in Ubaté and Chiquinquirá (37.5% and 21.21%, respectively), while in San Miguel de Sema individuals >4 years had the highest percentage of antibodies (18.3%). The Holstein breed had a higher prevalence in Ubaté and San Miguel de Sema (26.02% and 19.67%), and crossbreeds were more BLV-seroprevalence in Chiquinquirá (20.20%). In Ubaté, re-use of needles was identified as a risk factor, contaminated blood in needles is considered one of the main routes of transmission. On the other hand, manual milking was identified as a risk factor in San Miguel de Sema. Conclusion: The non-implementation of an individual needle per animal in Ubaté; the Holstein breed and manual milking in San Miguel de Sema were identified as risk factors for the presence of antibodies against the disease. EBL prevention and control plans should be established that focus on the implementation of management and sanitary practices based on herd biosecurity.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Feminino , Masculino , Colômbia/epidemiologia , Cidades , Estudos Transversais , Leucose Enzoótica Bovina/epidemiologia , Estudos Soroepidemiológicos , Fatores de Risco , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/etiologia
16.
Res Vet Sci ; 164: 104999, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708828

RESUMO

Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis, an endemic disease in dairy cattle of Argentina. However, little is known about the seroprevalence of BLV in beef cattle. In this study, we conducted a cross-sectional study including farms from thirteen provinces of Argentina. A total of 5827 bovine serum samples were collected from 76 farms and analyzed using an in-house developed enzyme-linked immunosorbent assay. Information about herd management was collected through a questionnaire, and univariate and multivariate analyses were performed to detect risk factors associated with BLV infection. Herd-level seroprevalence was 71.05%, while the mean animal-level seroprevalence was 7.23% (median = 2.69%; min = 0, max = 75). Only two provinces had no positive BLV samples. The other eleven provinces showed more than 50% of their farms infected with BLV. The multivariate model revealed that BLV prevalence was significantly associated with the use of animals raised in the same farm for cattle replacement (P = 0.005), breeding cows by natural mating with a bull (P < 0.001), and weaning calves after 6 months of age (P = 0.011). This extensive study revealed that BLV seroprevalence in Argentine beef farms has increased during the last years and allowed identifying some management practices associated with BLV prevalence. These data deserve special attention because BLV infection in beef cattle seems to lead to a dissemination pattern similar to that observed during the last decades in dairy cattle, especially considering that Argentina is the sixth beef producer in the world, with about 5% of global beef production.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Feminino , Bovinos , Animais , Masculino , Estudos Soroepidemiológicos , Estudos Transversais , Anticorpos Antivirais , Leucose Enzoótica Bovina/epidemiologia , Fatores de Risco , Ensaio de Imunoadsorção Enzimática/veterinária , Doenças dos Bovinos/epidemiologia
17.
J Dairy Sci ; 106(12): 9393-9409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641252

RESUMO

Bovine leukemia virus (BLV) has spread worldwide and causes serious problems in the cattle industry owing to the lack of effective treatments and vaccines. Bovine leukemia virus is transmitted via horizontal and vertical infection, and cattle with high BLV proviral load (PVL), which is a useful index for estimating disease progression and transmission risk, are considered major infectious sources within herds. The PVL strongly correlates with highly polymorphic bovine lymphocyte antigen (BoLA)-DRB3 alleles. The BoLA-DRB3*015:01 and *012:01 alleles are known susceptibility-associated markers related to high PVL, and cattle with susceptible alleles may be at a high risk of BLV transmission via direct contact with healthy cows. In contrast, the BoLA-DRB3*009:02 and *014:01:01 alleles comprise resistant markers associated with the development of low PVL, and cattle with resistant alleles may be low-risk spreaders for BLV transmission and disrupt the BLV transmission chain. However, whether polymorphisms in BoLA-DRB3 are useful for BLV eradication in farms remains unknown. Here, we conducted a validation trial of the integrated BLV eradication strategy to prevent new infection by resistant cattle and actively eliminate susceptible cattle in addition to conventional BLV eradication strategies to maximally reduce the BLV prevalence and PVL using a total of 342 cattle at 4 stall-barn farms in Japan from 2017 to 2019. First, we placed the resistant milking cattle between the BLV-positive and BLV-negative milking cattle in a stall barn for 3 yr. Interestingly, the resistant cattle proved to be an effective biological barrier to successfully block the new BLV infections in the stall-barn system among all 4 farms. Concomitantly, we actively eliminated cattle with high PVL, especially susceptible cattle. Indeed, 39 of the 60 susceptible cattle (65%), 76 of the 140 neutral cattle (54%), and 20 of the 41 resistant cattle (48.8%) were culled on 4 farms for 3 years. Consequently, BLV prevalence and mean PVL decreased in all 4 farms. In particular, one farm achieved BLV-free status in May 2020. By decreasing the number of BLV-positive animals, the revenue-enhancing effect was estimated to be ¥5,839,262 ($39,292.39) for the 4 farms over 3 yr. Our results suggest that an integrated BLV eradication program utilization of resistant cattle as a biological barrier and the preferential elimination of susceptible cattle are useful for BLV infection control.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Animais , Bovinos , Feminino , Alelos , Suscetibilidade a Doenças/veterinária , Antígenos de Histocompatibilidade Classe II , Complexo Principal de Histocompatibilidade
18.
Vet Immunol Immunopathol ; 263: 110636, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37572416

RESUMO

Bovine leukemia virus (BLV) is caused by a deltaretrovirus and has been associated with immunosuppression as well as comorbidities such as bovine mastitis, the costliest disease in the dairy sector. However, no previous study has explored at the synergistic immunosuppressive effect of the peripartum period with an immunosuppressive viral disease such as BLV. Thus, our study explored the effect of BLV infection in the periparturient period on the expression of PD-1 and CTLA-4 in blood T lymphocytes, and the impact of BLV infection on the rate of new intramammary infections during the early lactation. Here, we found that BLV-infected dairy cows always had a statistically significant higher expression of CTLA-4 and PD-1 in blood T cells. Furthermore, our findings indicated that BLV infection prolongs immunosuppression in dairy cows during the periparturient period by sustaining higher expression of immunological checkpoints in T cells. In addition, BLV-infected dairy cows have a higher rate of new intramammary infections during early lactation. Thus, our study provides new insights of the immunosuppressive effect of BLV on the most critical period of the cows' life with marked detrimental effect on protective T-cell immunity and comorbidities, such as bovine mastitis.


Assuntos
Doenças dos Bovinos , Leucose Enzoótica Bovina , Vírus da Leucemia Bovina , Mastite Bovina , Feminino , Bovinos , Animais , Linfócitos T , Antígeno CTLA-4 , Receptor de Morte Celular Programada 1 , Terapia de Imunossupressão/veterinária
19.
Virus Res ; 335: 199186, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532141

RESUMO

To review the available studies on the frequency of detection of the bovine leukemia virus in human samples, a systematic review with meta-analysis of the scientific literature was carried out, including papers published in English, Spanish, and Portuguese in 5 multidisciplinary databases. We collected information from different populations following a detailed and reproducible search protocol in which two researchers verified the inclusion and exclusion criteria. We identified 759 articles, of which only 33 met the inclusion criteria. Analyzed studies reported that the presence of the virus was measured in human samples, such as paraffin-embedded breast tissue and peripheral blood from 10,398 individuals, through serological and molecular techniques. An overall virus frequency of 27% (Ranging between 17 and 37%) was observed, with a high-frequency data heterogeneity between studies. The presence of this virus in different human biological samples suggests the need to investigate further its transmission route to humans and its potential role in developing and progressing diseases.


Assuntos
Vírus da Leucemia Bovina , Humanos , Vírus da Leucemia Bovina/isolamento & purificação
20.
Breast Cancer Res Treat ; 202(2): 325-334, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37517027

RESUMO

PURPOSE: The bovine leukemia virus (BLV) is a deltaretrovirus that causes malignant lymphoma and lymphosarcomas in cattle globally and has high prevalence among large scale U.S. dairy herds. Associations between presence of BLV DNA in human mammary tissue and human breast cancer incidence have been reported. We sought to estimate the prevalence of BLV DNA in breast cancer tissue samples in a rural state with an active dairy industry. METHODS: We purified genomic DNA from 56 fresh-frozen breast cancer tissue samples (51 tumor samples, 5 samples representing adjacent normal breast tissue) banked between 2016 and 2019. Using nested PCR assays, multiple BLV tax sequence primers and primers for the long terminal repeat (LTR) were used to detect BLV DNA in tissue samples and known positive control samples, including the permanently infected fetal lamb kidney cell line (FLK-BLV) and blood from BLV positive cattle. RESULTS: The median age of patients from which samples were obtained at the time of treatment was 60 (40-93) and all were female. Ninety percent of patients had invasive ductal carcinoma. The majority were poorly differentiated (60%). On PCR assay, none of the tumor samples tested positive for BLV DNA, despite having consistent signals in positive controls. CONCLUSION: We did not find BLV DNA in fresh-frozen breast cancer tumors from patients presenting to a hospital in Vermont. Our findings suggest a low prevalence of BLV in our patient population and a need to reevaluate the association between BLV and human breast cancer.


Assuntos
Neoplasias da Mama , Vírus da Leucemia Bovina , Neoplasias Mamárias Animais , Bovinos , Humanos , Feminino , Animais , Ovinos/genética , Masculino , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/genética , Vírus da Leucemia Bovina/genética , DNA Viral/genética , Mama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...